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Parameter estimation: Maximum likelihood estimation (MLE)

Previously: we reviewed various distributions and noted that most of them depend on
parameters.

In practice we collect DATA and make assumptions about the underlying distributions
where they come from. Often these underlying distributions ar known up to a parameter,
which could be scalar or vector. For example the data is assumed to come from N(µ, σ2);
in this case the unknown parameter is a vector θ = (µ, σ2). A major objective is then to
use the data to estimate the parameter that fully determines the underlying distribution. In
this section we review maximum likelihood estimation, in short MLE, as one approach for
parameter estimation.

The maximum likelihood estimator is defined to be the maximizing value of a certain
function called likelihood function; hence the name of the procedure: MLE. The likelihood
function has a very wide use in statistical theory. An important principle in statistics es-
sentially states that the likelihood function contains all the information about an unknown
parameter in the data.

Recall the likelihood function: If we observe a random sample y1, y2, . . . , yn from a distri-
bution denoted by f(y; θ), where θ is the unknown parameter that is of interest. Then the
likelihood function is

L(θ) = f(y1; θ)× f(y2, ; θ)× . . .× f(yn; θ). (1)

As the data are observed, the only unknown terms in the right hand side are those based
on θ. The function L(θ) gives the probability of observing the (observed) data y1, . . . , yn.
The intuition behind MLE is to estimate the unknown parameter θ by the maximizer of this
function; this value maximizes the probability of observing the sample we already observed.
By an abuse of notation, the maximizer value of L(θ), the maximum likelihood estimator
is also abbreviated in the literature by MLE. The context distinguishes if we talk about a
procedure or an estimator or an estimate. Formally we write

θ̂MLE = argmaxθL(θ) (2)

Most of the time, this maximization does not produce an analytical expression. In prac-
tice, because each of the values f(yi; θ) are tiny, their product is even tinier and may result
in numerical challenges. To avoid this numerical issue, it is more convenient to work with
a different quantity, referred by the name of log-likelihood function, which is essentially the
log on the natural base of the likelihood function, and is denoted by `(θ).

`(θ) = logL(θ) = log f(y1; θ) + . . .+ log f(yn; θ) (3)

Since log is a monotone increasing function, the maximizer of L(θ) also maximizes `(θ); and
the latter one is much easier to determine and more stable numerically.
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1 MLE for univariate Normal distribution

Suppose that y1, y2, . . . , yn is an observed sample from N(µ, σ2). Use the following steps to
find the MLE of both µ and σ2.

Recall that the density of N(µ, σ2) is

f(y;µ, σ2) = 1/
√

2πσ2 exp{−(y − µ)2/2σ2}

• Write the likelihood function for the observed sample for µ, σ2

• Write the log-likelihood function `(µ, σ2)
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• Calculate the maximizers of the log-likelihood funtion among the solutions of

∂`(µ, σ2)

∂µ
= 0 (4)

∂`(µ, σ2)

∂σ2
= 0 (5)

Denote the solutions by µ̂MLE and σ̂2
MLE.
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• Verify that µ̂MLE and σ̂2
MLE are points of maximum of `(·, ·) by

– Evaluating the hessian matrix (second derivative matrix) at the optimal point
and showing it is negative semi-definite (this means that aTHa ≤ 0 for all 2-
dimensional vectors a)

H =

 ∂2`(µ̂MLE ,σ̂2
MLE)

∂µ2
∂2`(µ̂MLE ,σ̂2

MLE)
∂µ∂σ2

∂2`(µ̂MLE ,σ̂2
MLE)

∂µ∂σ2

∂2`(µ̂MLE ,σ̂2
MLE)

∂(σ2)2

 (6)

– Showing that `(µ̂MLE, σ̂2
MLE) ≥ `(µ, σ2) for any values of µ ∈ R and σ2 > 0.

Remark The MLE of the model parameters can be obtained relatively simply in R. For
example:

> y=rnorm(25, mean=5, sd=3) # DATA

> llik= function(parm, y=y) { # log-likelihood fn

+ mean.parm = parm[1]

+ sd.parm = sqrt(parm[2])

+ sum( dnorm(y, mean=mean.parm,sd=sd.parm , log=TRUE )) }

>

>

> llik(c(5, 9), y=y)

[1] -71.68232
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This function evaluates the log-likelihood at any value of the parameters. R has several
functions for optimization. One widely used function is nlm, which does minimization of a
function of one or multiple parameters.

> nllik= function(parm, y=y) { # negative log-likelihood fn

+ mean.parm = parm[1]

+ sd.parm = sqrt(parm[2])

+ -sum( dnorm(y, mean=mean.parm,sd=sd.parm , log=TRUE ))}

>

> nlm(nllik, c(10, 15), y=y)

$minimum

[1] 69.38644

$estimate

[1] 4.530586 15.074981

$gradient

[1] 5.435812e-06 -1.030347e-06

$code

[1] 1

$iterations

[1] 8

Summary: For an observed sample y1, y2, . . . , yn from N(µ, σ2) the MLEs are:

µ̂ = ȳ =
1

n

n∑
i=1

yi (7)

σ̂2 =
1

n

n∑
i=1

(yi − ȳ)2 (8)
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2 MLE for multivariate Normal distribution

Suppose the data y1, . . . ,yn are a random sample from the multivariate normal distribution
Np(µ,Σ), where µ is unknown p-dimensional parameter and Σ is unknown p× p matrix.

Then, using the density of the multivariate normal, f(y;µ,Σ) = (2π)−p/2|Σ|−1/2 exp{−(y−
µ)TΣ−1(y − µ)/2} and following the same logic as earlier we obtain that the MLE for µ
and Σ are

µ̂ =
1

n

n∑
i=1

yi (9)

Σ̂ =
1

n

n∑
i=1

(yi − µ̂)(yi − µ̂)T . (10)

The MLE estimators enjoy very nice properties. However as we will see later on, the MLE
of the (co)variance parameter is biased and that a correction is needed to obtain an unbiased
estimator. The unbiased (co)variance parameter uses (n− p) in place of n in the expression
(10), where p is the dimension of the mean vector. In the case of univariate normal, p = 1.
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