
Applied Multivariate and Longitudinal Data
Analysis

Discriminant analysis and classification

Ana-Maria Staicu

SAS Hall 5220; 919-515-0644; astaicu@ncsu.edu

1



Consider the examples:

• An online banking service collects the IP address, past transaction history, and so forth of
users and based on the acquired information must be able to determine whether or not a
transaction being performed on the site is fraudulent or not.

• An emergency room system collects standard medical information on the admitted patients,
such as blood pressure, heart rate, temperature, age etc and based on this it must be able
to assign patients to one of three categories: “extremely urgent care”, “very urgent” and
“urgent care”.

The problem of separating two or more groups is sometimes called discrimination or “supervised”
classification.

Discrimination: finding the features that separate known groups in a multivariate sample.

Classification: developing a rule to allocate a new object into one of a number of known groups.

Wine data contains information on three varieties of wine cultivars ( ‘wines’ in the data folder).
For each of the 178 wines examined information on 14 variables is recorded. Here are the 14
variables.

Variable name Description
Class Which of three cultivars of wine grapes
Alcohol Alcohol content
Malic Malic acid: provides a sour taste
Ash Ash content
Alcal Alcalinity of ash
Mg Magnesium content
Phenol Total phenols: compounds found in drugs and plastics
Flav Flavanoids: compounds found widely in plants
Nonf Nonflavanoid phenols
Proan Proanthocyanins: tannins which affect color and aging
Color
Hue
Abs Ratio of light absorption at two different frequencies
Proline Proline, an amino acid

Question: Identify the distinguishing characteristics between the different groups.

A classification rule is based on the features that separate the groups, so the goals overlap.
Making mistakes is inevitable: 1) try to make as few mistakes as possible; and 2) quantify the cost
of misclassification.

In this chapter we will discuss discriminant and classification analysis for two groups (logistic
regression, linear discriminant analysis, quadratic discriminant analysis, Fisher’s discriminant anal-
ysis) for more than two groups and possibly on modern classification methods (k-nearest neighbor,
classification and regression tree, support vector machines).
Both discrimination and classification depend on multivariate observation X ∈ IRp .
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1 Logistic Regression

A. Two groups/classes

Riding lawnmower example.
The data includes information on 24 families,
of various income and lot-size, out of which 12
own a riding lawnmower and 12 are currently
non-owners. The data is in the file “T11-1.txt”.

Goal: Classify families based on their income and
lot size as prospective owners or non-owners.
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Some initial observations: Looking at the plot we see that

• riding mowers owners tend to have higher income and bigger lot-size

• there is some overlap between two groups

• income seems to be a better discriminator than lot-size

Setup: For each family i in the observed sample, we have

• Yi = 1 if the family is a riding lawnmower owner and Yi = 0 if non-owner

• Xi = (Incomei, Lot-sizei)
T

• Goal: Develop a classification rule that tells us the class membership of a new family based
of their income level and lot-size.

[Logistic regression:] Directly model the probability that the observation belongs to class 1, given
the predictor value for that observation. Logistic regression models the probability of the class
membership (Y ) given the predictor (X) using the logistic function (eg probability of the family
being a lawnmower owner given the income and lot size).

p(X) := Pr(Y = 1|X)

=
exp(β0 + β1X1 + . . .+ βpXp)

1 + exp(β0 + β1X1 + . . .+ βpXp)
=

exp(β0 + βTX)

1 + exp(β0 + βTX)

for some coefficients β0, β1, . . . , βp.
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From how p(X) is defined, it follows that p(X) ∈ [0, 1]. The idea is to predict category Y = 1
is p(X) is large (ie closer to 1) and predict category Y = 0 if p(X) is closer to 0.
Work with your partner to simplify the following log ratio

log
p(X)

1− p(X)
= log

Pr(Y = 1|X)

Pr(Y = 0|X)

This quantity is called log odds ratio and can take any value in IR1 ; we see that the log-odds
ratio is linear in X. Values that are close to −∞ indicate very low probability while values close
to ∞ indicate very high probability.

Interpretation: a covariate Xj for which the corresponding coefficient βj is positive, is associated
with an increase in the log-odds ratio, or equivalently an increase in p(X). In contrast, covariate
Xj for which the corresponding coefficient βj is negative, is associated with a decrease in the
log-odds ratio, or equivalently decrease in p(X).

1.1 Estimating the model parameters

Model assumption: Conditional on X = x, we have a logistic regression model

Y |X = x ∼ Bernoulli(p(x)), p(x) =
exp(β0 + β1x1 + · · ·+ βpxp)

1 + exp(β0 + β1x1 + · · ·+ βpxp)

Remark: the definition does not require any assumptions for the distribution of covariates (such
as multivariate normality).

The model parameters β0, β1, . . . , βp are directly estimated by maximizing the likelihood function.
Specifically, the likelihood function corresponding to a sample {yi,xi : i = 1, . . . , n} is

L(β0, β1, . . . , βp) =
n∏

i=1

p(xi)
yi{1− p(xi)}1−yi ; (1)

the maximizer does not have an analytical expression. Instead it is obtained numerically by itera-
tively reweighted least squares. It follows that P(Y = 1|X) can be estimated by

exp
(
β̂0 + β̂1X1 + · · ·+ β̂pXp

)
1 + exp

(
β̂0 + β̂1X1 + · · ·+ β̂pXp

)
.

Classifier: We can predict the class membership (Y ) for a new data object xnew using the estimated
probability that Y = 1 conditional on X = x or equivalently using β̂0 + β̂Txnew as follows:

• Ypred = 1 if P̂ (Y = 1|X = xnew) ≥ 0.5 or equivalently if β̂0 + β̂Txnew ≥ 0

• Ypred = 0 if P̂ (Y = 1|X = xnew) < 0.5or equivalently if β̂0 + β̂Txnew < 0.
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2 Assessing predictive ability of classifier: confusion

matrix and ROC curve

In practice, a binary classifier such as this one can make two types of errors: it can incorrectly
assign a family who owns a riding mower to be in the “non-owner” category or it can incorrectly
assign a non-owner to be in the “owner” category. A confusion matrix is a table that displays this
information; and thus is used to describe the performance of a classifier.

True

Classify as: owner non-owner

owner 11 2
non-owner 1 10

The confusion matrix compares the classifier predictions with the true class membership.
Elements on the diagonal of the matrix represent individuals whose default statuses were

correctly predicted, while off-diagonal elements represent individuals that were misclassified.

Consider the classiffier that has the confusion matrix shown above. The accuracy of a classifier
is defined as the proportion of correct identification of positive and negatives, in our case (11 +
10)/(12+12) = 87.5%. Thus while the overall missclassification rate is relatively low (1+2)/(12+
12) = 12.5%%, the error rate among the non-owner families is quite high (2/12 = 16.67%).

Class-specific performance is also important in medicine and biology, where the terms sensitivity
and specificity characterize the performance of sensitivity specificity a classifier or screening test.
In this case the sensitivity (true positive rate, TPR=TP/P) is the percentage of true owners that
are identified, 11/12 = 91.67% in this case. The specificity (true negative rate, TNR=TN/N)
is the percentage of non-owners that are correctly identified, here 10/12 = 83.33%. One minus
specificity is the proportion of negatives incorrectly identified, also known as false positive rate
(FPR=FP/N); here FPR =2/12 = 16.67%. In terms of hypothesis testing: FPR or one minus
speficifity corresponds to the Type I error, the false negative rate (FNR=1-TPR) to the Type II
error, and TPR to the power.

True

Classify as: Positive Negative

+ True Positive (TP) False Positive(FP)
− False Negative (FN) True Negative

Total Positives (P) Negatives (N)

The confusion matrix compares the classifier predictions with the true class membership.
Elements on the diagonal of the matrix represent individuals whose default statuses were

correctly predicted, while off-diagonal elements represent individuals that were misclassified.
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Assessing the accuracy of a classifier on the data that was used to determine the classifier,
would yield to an overly optimistic misclassification error (lower misclassification error than true).
In general it is recommended to split the data into a training set and a test set; use the training
set to construct the classifier, and then use the test set to evaluate its accuracy.

The Receiver Operating Characteristic (in short ROC) curve is a popular graphic for simulta-
neously displaying the two types of errors for all possible thresholds.

• It plots sensitivity (y-axis) versus 1 - specificity (x-axis).

The larger the area under the ROC curve (AUC) the better. Out of multiple classifiers, select
the one with the largest AUC.

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

6

https://en.wikipedia.org/wiki/Receiver_operating_characteristic


B. More than two groups/classes
Consider that the response can take multiple categories (eg. Y=1,2,3 in the wine example).

Let k index the classes {1, 2, . . . , K}, we posit the model

Pr(Y = k|X = x) =
exp(βk0 + βT

kx)∑K
`=1 exp(β`0 + βT

`x)
,

for unknown intercepts βk0 and unknown regression coefficients βk.

Since Pr(Y |X) completely specifies the conditional distribution, the multinomial distribution
is appropriate. The model is fitted through maximum likelihood estimation, in a similar way to the
case of two classes.

Class prediction: Assign a new observation to the most likely class given its predictor value.
More formally, classify a new observation with the predictor value xnew, as the class that maximizes
{P̂ r(Y = `|X = xnew) : ` = 1, . . . , K}, where the “hat” notation means that we are using
the previously described model with the unknown parameters β’s substituted by their maximum
likelihood estimates:

Ypred = k if P̂ (Y = k|X = xnew) = max
`
P̂ (Y = `|X = xnew).

The last part is essentially equivalent to:

Ypred = k if β̂k0 + β̂
T

kxnew = max
`=1,...,K

{β̂`0 + β̂
T

`xnew}.

Final remarks on the logistic regression model:

• When the classes are well-separated, the parameter estimates for the logistic regression model
are surprisingly unstable.

• If the sample size n is small and the distribution of the predictors X is approximately normal
in each of the classes, again the estimation in the logistic regression model is unstable.
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3 Discriminant Analysis

Intuition: Logistic regression involves directly , Pr(Y = k|X = x) using the logistic function. We
now consider an alternative and less direct approach to estimating these probabilities using the
logic:

Pr(Y = k|X = x) =
Pr(Y = k)P (x|Y = k)

P (x)
.

This entails

- describing the prior class probabilities - the overall probability that a random observation is
in the kth class, πk = Pr(Y = k),

- modeling the distribution of the predictors X for an observation that comes from the kth
class; fk(x) is the density of the X in the kth group/class;

application of the Bayes theorem provides the posterior probability that an observation for which
X = x belongs to class k:

Pr(Y = k|x) =
πkfk(x)∑K
k=1 πkfk(x)

. (2)

When the underlying distributions are normal with same covariance, it turns out that the final
model is very similar to the logistic regression. However, unlike the logistic regression model which
shows instability in the case of perfect separation or small sample size, linear/quadratic discriminant
analysis does not suffer from this problem.

Class prediction: The classifier described by (2) that has the lowest possible (total) error rate
out of all classifiers is Bayes classifier, which will classify an observation to the most likely class,
given its predictor values, that is the class for which Pr(Y = k|x) is the largest.

Of course in practice we do not know the prior class probabilities πk, nor the distribution of the
predictors in class k, for k = 1, . . . , L; so we need to estimate them.

• Estimate πk by π̂k = nk/n which is the fraction of the observations belonging to class k.
Here nk is the number of observations in class k and n is the total number of observations.

• Find an approach to estimate fk(x); this allows to develop a classifier that approximates the
Bayes classifier.

LDA assumes that the distribution of the predictors in each class is multivariate normal
Np(µk,Σ) with class-specific mean vectors µk and same covariance across the classes
Σk = Σ.

3.1 LDA for p = 2

Consider p = 2 and assume further that the common covariance matrix is diagonal, Σ =
diag(σ2

1, σ
2
2). Recall the density of a bivariate normal distribution:

fk(x1, x2) =
1

2πσ1σ2
exp

{
−(x1 − µk1)

2

2σ2
1

− (x2 − µk2)
2

2σ2
2

}
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where µk = (µk1, µk2)
T is the class k mean vector.

fk(x) is the multivariate density for the
In class work with partner:

• Plug in the density above to calculate the posterior probability that an observation with
X = x is in class k:

• Based on this can you find a simpler way to describe when an observation with X = x is in
class k. For illustration, consider further that there are only K = 2 classes:

The function

δk(x) = x1
µk1

σ2
1

+ x2
µk2

σ2
2

− µ2
k1

2σ2
1

− µ2
k2

2σ2
1

+ log πk

is called discriminant function. The word linear in the name of the method (linear discriminant
analysis) comes from the fact that the discriminant function δk(x) is linear in in x.

In practice this still requires estimation of the group mean vectors µk and of the shared variance

matrices Σk. Denote by µ̂k and Σ̂ their corresponding estimates; µ̂ is the group mean vector and

Σ̂ is the pooled covariances, which for illustration is assumed diagonal here).

The Bayesian decision boundaries for two different classes k and l are defined by the points for
which δk(x) = δl(x); formally {x ∈ R2 : δk(x) = δl(x)}.

3.2 LDA for p ≥ 2

Assume that fk(x) is the multivariate normal density Np(µk,Σ), which recall, has the expression

fk(x) = (2π)−p/2|Σ|−1/2 exp{−1

2
(x− µk)TΣ−1(x− µk)}.
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It implies that the Bayes classifier, assigns an observation with x to class k for which the value
of the discrimination function

δk(x) = xTΣ−1µk −
1

2
µkΣ−2µk + log πk

is the largest.
Also the decision boundaries for two different classes k and l are given by

{x ∈ Rp : xTΣ−1µk −
1

2
µkΣ−2µk + log πk = xTΣ−1µl −

1

2
µlΣ

−2µl + log πl};

notice linear bundaries (again related to the “linear” part of the method name).
In practice, like for the bivariate case, the class specific mean vectors are estimated by the class

means, µ̂k = 1
nk

∑
i:xi∈ class k xi and Σ̂ is estimated by the pooled covariance; see previous notes

on how to calculate it.
Linear discriminant analysis is very popular for more than two classes. When the multivariate

normality assumption holds and furthermore the class-specific covariances are the same across
k = 1, . . . , K then LDA works really well. However when the common variance assumption is far
from valid, then LDA can be improved.

4 Quadratic discriminant analysis (QDA)

When the normality assumption holds, but the commn variance assumption does not hold, then
another approach, quadratic discriminant analysis offers an improved classifiers.

In class: What does the word quadratic seem to imply in terms of the discriminant function?
or boundaries ?

Model assumption: fk(x) is the multivariate normal density Np(µk,Σk),

fk(x) = (2π)−p/2|Σk|−1/2 exp{−1

2
(x− µk)TΣ−1k (x− µk)}.

Under this assumption, the Bayes classifier assigns an observation with x to class k for which

δk(x) = −1

2
(x− µk)TΣ−1k (x− µk)− 1

2
log |Σk|+ log πk

= −1

2
xTΣ−1k x + xTΣ−1k µk −

1

2
µT

k Σ−1k µk −
1

2
log |Σk|+ log πk

is the largest. Unlike LDA, this quantity is quadratic in x, hence the name “quadratic” in the title.
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Final remarks:

• Both LDA and QDA are parametric models: they assume the distribution of the predictors
in each class is normal. Validity of this assumption must be ensured in order to apply the
methods.

• The difference between LDA and QDA is similar to the bias-variance trade off. LDA uses
fewer parameters, p(p + 1) covariance parameters, while QDA uses much more parameters
Kp(p+ 1); thus QDA is more flexible. As a result LDA has less variance than QDA. General
rule of thumb: QDA is recommended if the training set is very large and the variance of the
classifier is not a concern, or if the common covariance assumption is clearly violated.

• Logistic regression does not require any assumptions about the distribution of the predictors.

• When the true decision boundaries are linear LDA and logistic regression tend to perform
well.

• When the true decision boundaries are non-linear then QDA may give better results

• With the logistic regression we can add quadratic terms X2
1 , X

2
2 , . . . or cross products

X1X2, . . . of the predictor X = (X1, . . . Xp)
T . Thus the form of the model could yield

similar decision boundaries as QDA.
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5 K-Nearest-Neighbors

In theory we would always like to predict a class-based response using the Bayes classifier. But for
real data this requires knowledge of the conditional distribution of the response given the predictors
which we so far modeled using parametric assumptions. In the following two methods we discuss
approaches that relax these assumptions.

One such method is the K-nearest neighbors (KNN) classifier. Given a positive integer K and
a test observation x0, the KNN classifier first identifies the neighbors K points in the training data
that are closest to x0, represented by N0. It then estimates the conditional probability for class j
as the fraction of points in N0 whose response values equal j. Formally we write this as

Pr(Y = j|X = x0) =
1

K

∑
i∈N0

I(yi = j), (3)

where N0 = {x : ‖x− x0‖ is among the k smallest distances}
Finally, KNN applies Bayes rule and classifies the test observation x0to the class with the largest

probability. The figure below illustrates the procedure for a toy example (James, Witten, Hastie
and Tibshirani, 2013) and considers K = 3. Left: a test observation at which a predicted class
label is desired is shown as a black cross. The three closest points to the test observation are
identified, and it is predicted that the test observation belongs to the most commonly-occurring
class, in this case blue. Right: The KNN decision boundary for this example is shown in black.
The blue grid indicates the region in which a test observation will be assigned to the blue class,
and the orange grid indicates the region in which it will be assigned to the orange class.
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The choice of K has a drastic effect on the KNN classifier obtained. When K is very small,
the decision boundary is overly flexible and finds patterns in the data that dont correspond to the
Bayes decision boundary. The resulted classifier has low bias but very high variance. On the other
hand, if K is too large, the method becomes less flexible and produces a decision boundary that
is close to linear. This corresponds to a low-variance but high-bias classifier.

Choosing the correct level of K and thus of flexibility is critical to the success of any statistical
learning method. In this sense, splitting the data into a train set and test set and choosing K as
the level that minimizes the test set error tends to produce good KNN classifiers.
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6 Classification Trees

Tree-based methods for classification involve segmenting the predictor space into a number of
simple regions (see the Figure below for the toy example with the riding lawnmowers). The
approach is easily extended to accommodate continuous outcome and the decision trees are called
“regression trees”. Brieman, Friedman, Olshen and Stone (1984) proposed this methodology
and developed R program to implement the techniques called CART (classification and regression
trees).

As before Y denotes the categorical response and X = (X1, . . . , Xp)
T denoting the predictor.

In classification trees:

1. we divide the predictor space - the set of possible values for X1, X2, . . . , Xp - into J distinct
and non-overlapping regions R1, R2, . . . , RJ .

2. for every observation xnew that falls into the region Rm we predict its class as the most
commonly occurring class for the training observations in region Rm.

A tree is “grown” by using recursive binary splitting into two subgroups of the type Xj < c and
Xj ≥ c. The criterion to make the binary splits is based on the classification error rate, defined as
the fraction of the training observations in that region that do not belong to the most common
class. (Notice this classification error rate is based on the training set). However in practice it
turns out that the classification error rate is not sufficiently sensitive for growing tress.

Notation p̂mk - represents the proportion of training observations in region Rm that are from
the class k. Other more common alternatives are:

• Gini index : Gm =
∑K

k=1 p̂mk(1 − p̂mk). This gives a measure of the total variance across
the K classes. Gini index takes a low value for a node (region) for which p̂mk are close to 0
or 1; such type of node with small Gini index is called “pure node” and it indicates that the
observations are predominantly from one single class.

• Entropy : Dm = −
∑K

k=1 p̂mk log p̂mk. Since all the proportions are between 0 and 1 it follows
that the entropy is non-negative. Like Gini index, the entropy will take a small value if the
node is pure.

14



When building a classification tree, either the Gini index or the entropy are typically used to
assess the quality of a particular split. In either case one repeats steps [1.] and [2.] until the
accuracy criterion used is below a certain threshold.

The algorithm described above may produce good predictions on the train set, but it likely
overfits the data and thus may lead to poor test set performance. This is because the tree may
be too complex. In this case, smaller tree with fewer splits may be better that is leading to lower
variance and better interpretation at the cost of little bias. To bypass this one

3. prunes it back in order to obtain a subtree. Typically you select the subtree that yields
the lowest misclassification error rate. In this regard the classification error rate is typically
preferred; though any of the three evaluation methods could be used.

At step [3.] K-fold cross validation may be used, where the training set is divided into K folds:
(K − 1) folds are used to grow the tree and the Kth one is used to evaluate the prediction error.
The tree that results in the smallest prediction error is selected.

Some advantages and disadvantages of trees

+ Trees are very easy to explain to people. In fact, they are even easier to explain than linear
regression!

+ Some believe that decision trees more closely mirror human decision-making than do any
other classification techniques studied

+ Trees can be displayed graphically, and are easily interpreted even by a non-expert (especially
if they are small).

+ Trees can easily handle qualitative predictors without the need to create dummy variables.

– Trees generally do not have the same level of predictive accuracy as some of the other
classification techniques

– The trees can be very non-robust. In other words, a small change in the data can cause a
large change in the final estimated tree.

The classification trees can be improved. Classification trees-based approaches

• Bagging. Create multiple copies of the original training set using the bootstrap; then fit
a decision tree to each copy; then combine all of the trees to create a single predictive
model. This approach lowers the variance of the classification method, at the expense of
interpretation.

• Random forests. Build B decision trees on bootstrap training samples, but for each one use
a subset of predictors determined by random selection (typically m ≈ √p). This reduces the
variability even more.

• Boosting/ This works similarly to bagging, except the trees are grown sequentially by using
information from the previously grown trees.

We do not cover these methods in detail.
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7 Support Vector Ma-

chines

Separating hyperplane:

• Y = ±1 (two-class).

• A hyperplane:

{x : f(x) = xTβ + β0 = 0}

• Classification rule:

sign[f(x)] = sign[xTβ + β0]

or equivalently Y f(x) > 0.

Data {yi,xi : i = 1, . . . , n}. When the
two classes are linearly separable:

• More than one hyperplane can sepa-
rate the training points perfectly.

• Find a hyperplane that achieves
biggest margin between the training
points for +1 and −1.

• Thus we maximize C (margin width)
such that

yi(x
T

iβ + β0) ≥ C, i = 1, . . . , n.

When the two classes overlap:

• allow for some points to be on the
wrong side of the margin

• Now we maximize C (margin width)
such that

yi(x
T

iβ+β0) ≥ C(1−ξi), i = 1, . . . , n;

ξi ≥ 0,
∑n

i=1ξi ≤ constant

When the two classes are
not linearly separable:

• f(x) = h(x)Tβ + β0, where h(x) is a
basis expansion of x.

• The quantities h(x) are called “fea-
tures” (typically unknown)

• SVM utilizes these features and builds
a classification rule based on them

•
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Classification methods at a glance

LDA Normal distribution for covariates
same covariance matrix

QDA Normal distribution for covariates
different covariance matrix

Logistic regression No distributional assumption on covariates
regression setup

K-NN No distributional assumption on covariates
Nonparametric

Classification trees No distributional assumption on covariates
Nonparametric

SVM No distributional assumption on covariates
Nonparametric
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