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Factor analysis is another data dimension reduction tool. Factor analysis can be viewed as
an extension of PCA. Specifically, for vector centered variate X of dimension p recall that PCA
identifies a set of (much) fewer mutually uncorrelated variables, Z1, . . . Zm such that X can be
approximated parsimoniously by

X ≈ a1

√
λ1Z1 + . . .+ am

√
λmZm,

wherer a1, . . . , am are mutually orthogonal unit one vectors in Rp and Z`’s are zero mean, unit-
variance and λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0. Factor analysis introduces a statistical model that uses a
parsimonious representation of the inner structure plus error. In factor analysis, the terms analogous
to Z`’s are referred to as factors. The statistical model will be something like

X = l1Z1 + . . .+ lmZm + ε, where ε ∼ N(0, σ2) is error and independent of factors Z`’s.

PCA focuses on the total variation and tries to explain this using only few main features;
factor analysis focuses on the covariance or correlation of multiple variables and looks at finding
the common factors that account for the largest covariance. Moreover, different from PCA, the
approximation used in factor analysis is based on a statistical model.
Intuitively, factor analysis relies on the assumption that the variables that compose X can be
grouped according to their correlations using the reasoning:

1) variables in the same group are highly correlated among them;

2) variables in different groups have smaller correlations;

factor analysis assumes that for each group of variables there is a single underlying structure or a
factor that is responsible for the observed high correlation.

Applications of the factor analysis:

• identification of underlying factors:

1. cluster variables into homogeneous groups

2. create new variables (e.g. factors)

3. allows one to gain insight into categories;

• screening of variables

1. by identifying groups it allows us to select few variables to represent the variables from
larger set

2. useful in regression in handling collinearity

Example: Recall the stock-price data. Weekly stock return data. 103 weekly rates of return
on 5 stocks listed on the NY stock exchange (JPMorgan, Citibank, WellsFargo, Shell, Exxon) are
recorded for 103 successive weeks. We define

weekly return =
current closing price - previous week closing price

previous week closing price

adjusted for stock splits and dividend. Rates of returns across stocks are expected to be correlated.
Can we see what factors/components could possibly be driving the stock-prices?
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One Factor Model (Spearman, 1904)

The One Factor Model:

Xi1 − µ1 = l1Fi + εi1,

Xi2 − µ2 = l2Fi + εi2,

...
...

Xip − µp = lpFi + εip,

Key concepts:

• Fi is the latent (unobservable) variable

• Xi = (Xi1, . . . , Xip)
T is the p-dimensional outcome

• εi = (εi1, . . . , εip)
T is the vector of measurement error for X’s

• l = (l1, . . . , lp)
T is the vector of loadings; lj is the loading for Xj.

Model assumptions:

• Fi ∼ (0, 1); this means that F has zero-mean and unit-variance

• Fi and εij’s are uncorrelated; cov(Fi, εij) = 0 for all j

• εij ∼ (0, σ2
j ) for all j. Errors are uncorrelated: cov(εij, εik) = 0

This the Xij’s are only related to each other through the factor Fi. Conditional on Fi the
variables are independent of one another (this property is sometimes referred to by conditional
independence).

In class: Calculate var(Xij).

Consider Xij is standardized to have unit variance. Then l2j gives the percentage variance in Xij

that is explained by the latent factor Fi, when . The percentage of variance of Xij explained by
the factor/s, in this case l2j , is called in the literature communality.

In class: Calculate cov(Xij, Xik). If Xij’s are standardized then this is the same as corr(Xij, Xik).
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Note that the covariance between Xij and Xik for k 6= j is solely determined by Fi!

Factor analysis is equally applicable to the original Xi’s as well as to the standardized Xi’s. In fact
one could recover the factor/loadings for the original Xi from the ones corresponding to the stan-
dardized Xi’s. The majority of factor analysis use correlation matrices; we will use the correlation
matrix (i.e Xij’s have been standardized to have unit variance) for the rest of this chapter.

The Orthogonal Factor Model

Next we discuss extensions of these ideas to the case where there are multiple factors. The model
is called orthogonal factor model, where orthogonal is used with the sense of independent.

The Orthogonal Factor Model:

Xi1 − µ1 = l1,1Fi1 + l1,2Fi2 + · · ·+ l1,mFim + εi1,

Xi2 − µ2 = l2,1Fi1 + l2,2Fi2 + · · ·+ l2,mFim + εi2,

...
...

Xip − µp = lp,1Fi1 + lp,2Fi2 + · · ·+ lp,mFim + εip,

where:

• µj is the mean of the j-th variable

• Fi1, Fi2, . . . , Fim are the common factors (latent variables);
Fij ∼ (0, 1) and cov(Fij, Fik) = 0 for j 6= k.

• lk = (l1,k, . . . , lp,k)T is the vector of loadings for factor Fik;
lj,k is the loading of variable j, Xij, on factor k, Fik;

• εij is a measurement error, affecting only Xij; sometimes is called specific factor ;
cov(εij, Fik) = 0.

The loadings lj,k represent the degree to which (standardized) variable Xij correlates to
factor Fik; thus lj,k’s range between −1 and 1. Inspection of factor loadings provide an
idea of the extent to which each variable contributes to the meaning of each factor.
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In class exercise: Let Σ be the p× p covariance matrix of X’s defined by (Σ)jk = cov(Xij, Xik).
Determine Σ in terms of the loadings lj,k’s and variances of the specific factors σ2

j . Discuss what
are the model parameters and what type of quantities they are (random/fixed).

Further terminology:

• The communality of Xij (denoted by h2j) is the proportion of the variance of Xij

that is explained by the m common factors

h2j = l2j,1 + l2j,2 + · · ·+ l2j,m;

Intuitively variables with high communality are ‘informative’.

• var(Xij) = h2j +σ2
j . As Xij have been standardized to have unit variance, it follows

σ2
j = 1− h2j ;

this is the part of variance that is unique to Xij.

Orthogonal factor model in matrix form:

Xi
p×1
− µ

p×1
= L Fi

p×m m×1
+ εi

p×1
.

In terms of the observable variables X, the model assumptions mean that

E(Xi) = µ,

cov(Xi) = Σ = L LT

p×m m×p
+ Ψ

p×p
;

where cov(ε) = Ψ = diag
(
σ2
1, σ

2
2, . . . , σ

2
p

)
.

As X is standardized, we have Σ = R (the correlation matrix).

The observable X and the latent (unobservable) F are related by

Cov(Xi,Fi) = L.

5



Note that if T is m ×m orthogonal matrix (TTT = TTT = Im), then (LT)(LT)T = LLT ,
so the loadings LT generate the same Σ as L! Conclusion: the loadings are not uniquely defined.

Remark:

• Model parameters: L (fixed) and Fi (random).

• First step: estimate L (factor loadings). Recall that L is not unique, lets focus on a rotation
of L that improves interpretation.

• Second step: estimate Fi (factor scores) given L.

6



Estimation of factor loadings and scores

Let X1, . . . ,Xn be a sample from a p-multivariate distribution with mean µ = (µ1, . . . , µp)
T and

covariance matrix Σ = (Σ)jk. Denote by

Zi1 =
Xi1 − µ1√

Σ11

Zi2 =
Xi2 − µ2√

Σ22
. . . . . .

Zip =
Xip − µp√

Σpp

the standardized data and by Zi = (Zi1, . . . , Zip)
T the standardized Xi. Notice that Zi’s have

mean 0p and covariance equal to Γ.

We assume the orthogonal factor model for the standardized data Z’s; that is

Zi
p×1

= L Fi
p×m m×1

+ εi
p×1

i = 1, 2, . . . , n; (1)

where Fi ∼ (0p, Ip) and εi ∼ (0p,Ψ) for diagonal matrix Ψ, and the factors Fi are independent of
errors εi. The loadings L and the latent scores Fi are unknown. In the remaining of this section
we discuss estimation of both these quantities.

For observed data x1, . . . ,xn we estimate the mean and the covariance by the sample mean
x̄ = (x̄1, . . . , x̄p)

T and sample covariance S = (Sjk)jk. If the off-diagonal elements of S are very
small, relative to the diagonal elements of S, then the specific factors play a big role in how the
variables vary/co-vary and thus a factor analysis would not be useful. (Essentially this means that
the varaibles are nearly uncorrelated.) In the following we assume that S deviates considerably
from a diagonal matrix. Thus the number of uncorrelated features is less than the number of
variables; hence performing a factor analysis makes sense.

Form the standardized data using the sample mean and sample covariance, zij = (xij− x̄j)/
√
Sjj.

Pretend zi = (zi1, . . . , zip)
T arises from model (1). Denote by R the sample covariance of zi’s; R

is the sample correlation of the original data xi’s. We will estimate the loadings and scores based
on the standardized data zi’s.

Model estimation consists of two steps:

1) estimate the loadings L;

2) estimate the scores Fi given the estimated loadings.
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Step 1: Estimation of the factor loadings

Three approaches are common for the estimation of the loadings matrix L: i) principal compo-
nent analysis (PCA)-based approach; ii) a modified version of PCA; and iii) maximum likelihood
estimation.

(i) Principal components solution

Consider the spectral decomposition of R,

R = λ̂1â1â
T

1 + · · ·+ λ̂mâmâT

m + λ̂m+1âm+1â
T

m+1 + · · ·+ λ̂pâpâ
T

p;

in matrix form this is R = ĈΛ̂ĈT =
(
ĈΛ̂

1/2
)(

ĈΛ̂
1/2
)T

.

Choose m such that λ̂1 + λ̂2 + · · ·+ λ̂m is much much larger that λ̂m+1 + · · ·+ λ̂p. Then the
first m terms give the best rank-m approximation to R. The m rank approximation matrix
is R(m) = λ̂1â1â

T
1 + · · ·+ λ̂mâmâT

m. Here

• Estimate L by L̂ = L(m), where L(m) is the p×m matrix with the columns

√
λ̂1â1, . . . ,

√
λ̂mâm.

R(m) = L(m)L(m)T

• Estimate Ψ by Ψ̂ = diag
(
R− L(m)L(m)T

)
Note: The remainder term R − L(m)L(m)T is non-negative definite, so its diagonal entries

are non-negative. Hence we can get a closer approximation R ≈ L(m)L(m)T + Ψ̂.
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(ii) Principal factor solution

This approach estimates the loadings iteratively.

1 Step 1: Denote by ψ∗jj an initial value for the jth diagonal element of Ψ. Then we obtain
initial value for communalities by h∗2j = 1− ψ∗jj.

2 Step (k): Update the “working” correlation matrix using current off-diagonal elements of
Rk-1 and communalities

Rk =


h∗21 r1,2 . . . r1,p
r2,1 h∗22 . . . r2,p

...
...

. . .
...

rp,1 rp,2
. . . h∗2p

 .
Use the spectral decomposition of Rr to find its best rank-m approximation

Rk ≈ L∗L∗k
T .

3 Step (k + 1): updated value of communalities is

h
(k)∗2
j =

m∑
k=1

l∗2j,k.

Updated value for Ψ: diagonal matrix with diagonal elements: ψ
(k)∗
j = 1 − h(k)∗2j ; equiva-

lently:
Ψ∗k = I− diag

(
L∗kL

∗
k
T
)
.

The method implies iteration until convergence; some approaches use a single step iteration.
There are several choices for selecting initial values for the unique variances ψ∗jj; a common

one is to use the mean squared error of the regression of Xij onto the rest of the variables, without
j’th one, {Xij′ : j′ 6= j}.

Nevertheless this approach is far less popular than the principal components solution.
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(iii) Maximum likelihood method

Maximum likelihood implies knowledge of the generating model. Assume that Xi ∼ Np(µ,Σ).
The log-likelihood function for the original data is:

`(µ,Σ) = −n
2

log |2πΣ| − 1

2

n∑
i=1

(xi − µ)TΣ−1(xi − µ) (2)

= −n
2

log |2πΣ| − n

2
Tr(Σ−1S)− n

2
(x̄− µ)TΣ−1(x̄− µ) (3)

It follows that the induced log-likelihood for the standardized data Zi with mean zero and
covariance Γ = LLT + Ψ is

`(L,Ψ) = −n
2

log |2π(LLT + Ψ)| − n

2
Tr{(LLT + Ψ)−1)S}.

The model is not identified because if L is a solution, then any rotation of L is also a solution.
To make it identifiable, we impose an additional constraint (uniqueness condition):

LTΨ−1L = diagonal matrix.

The likelihood function is optimized numerically:

L̂, Ψ̂ = argmaxL,Ψ`(L,Ψ)

under the constraint specified above. There is no closed form equation for L̂.

• The maximum likelihood estimates (MLE) of communalities are:

ĥ2j = ̂̀2
j1 + ̂̀2j2 + . . .+ ̂̀2jm j = 1, . . . , p.

To asses the importance of the factors one can calculate the proportion of sample variance
explaiend by each common factor. The proportion of total sample variance due to the kth
common factor is

̂̀2
1,k + ̂̀22,k + . . .+ ̂̀2p,k

p
;

where we use p as the denominator because p is the trace of the correlation matrix R.

The differences between the maximum likelihood estimates and the“principal factors” ap-
proach can be substantial. If the data appear to be normally distributed (as shown by
the usual tests), then the additional efficiency of maximum likelihood estimation is highly
worthwhile.
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How many factors to choose?

Intuitively the number of factors is the number of uncorrelated constructs that are measured by
Zi’s. Keep in mind that this is a dimension reduction if this number is less than the dimension of
Zi. How to choose the number of factors ?

• Using the principal components. Select the number of factors equal to the reduced rank
approximation of the covariance of Zi’s. Use the scree plot and the percentage of variance
explained criterion in this regard.

• Large sample test for the number of common factors, if MLE is used to estimate the factor
loadings.

Using the normality assumption, a large sample test for the number of common factors m
has been developed. Specifically, consider the hypothesis testing

H0 : m = m0; HA : m > m0;

Use the likelihood ratio test (LRT) statistic: LRT = −2 × log likelihood ratio. The null
distribution of the LRT is approximately

LRT ∼ χ2

{(p−m0)
2−p−m0}/2.

Note that Degrees of freedom > 0 if and only if m0 <
1
2

(
2p+ 1−

√
8p+ 1

)
.
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Factor rotation

In PCA, the first factor describes most of variability. After choosing the number of factors to
retain, we want to spread variability more evenly among the factors. To do this we “rotate” the
factors;

• redefine factors such that loadings on various factors tend to be very high (−1 or 1) or very
low (0)

• intuitively, it makes sharper distinctions in the meanings of the factors.

“ Ideally, we would like to see a pattern of loadings such that each variable loads
highly on a single factor and has small to moderate loadings on the remaining factors.”
(Johnson & Wichern, page 504):

[That is, ideally, each row of L should have a single large entry.]

Recall from the corresponding equation

Γ = LLT + Ψ

that L and LT give the same Γ for any orthogonal matrix T. We can choose T to make the
rotated loadings L∗ = LT more readily interpreted.
Note: the rotation changes neither R nor Ψ, and hence the communalities are also unchanged.
Furthermore the rotation DOES NOT improve the fit. It only improves interpretability !

Varimax criterion searches for a rotation (i.e. linear combination) of the original factors such
that the variance of the loadings is maximized. Intuitively, if qj,k is the loading of the jth variable
on the kth factor then V =

∑∑
(q2j,k− q̄2j,·)2, where q̄2j,· is the mean of the squared loadings. [For

computational stability, each of the loadings matrix is generally scaled to length one prior to the
optimization procedure. ]

Making this variance large tends to produce two clusters of scaled loadings, one of small values
and one of large values. Each column of the rotated loading matrix tends to contain:

• a group of large loadings, which identify the variables associated with the factor;

• the remaining loadings are small.

Example. Let L be as below. Then the rotated loadings L∗ are

L =


0.5 0.5
0.8 0.8
−0.7 0.7
−0.5 −0.5

 ; L∗ =


0 0.6
0 0.9
−0.9 0

0 −0.9


Other orthogonal rotations are: QUARTIMAX (minimizes the number of factors used to explain
each variable) and EQUIMAX which is a compromise between VARIMAX and QUARTIMAX.
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Step 2: Estimation of the factor scores

Let L̂ and Ψ̂ be the estimated factor loadings matrix and the estimated specific factor variance.
The estimation of the factor scores relies on the assumption that these terms are known, and so
the model used to estimate Fi is

Zi = L̂ Fi + εi, Fi ∼ (0p, Ip), εi ∼ (0p, Ψ̂);

where Zi is the ‘observed data’.
There are two commonly used approaches to estimate the factor scores Fi: i) one approach

treats Fi as fixed parameters; ii) the second one treats Fi as random quantities.

(i) Least squares estimation (weighted least squares)

One method to estimate Fi is based on minimizing the weighted sum of squared errors:

WSS(Fi) =
(
Zi − L̂Fi

)T
Ψ̂
−1 (

Zi − L̂Fi

)
.

Specifically F̂i = argminFi
WSS(Fi). The minimizer has the following analytical solution:

F̂i =
(
L̂T Ψ̂

−1
L̂
)−1

L̂T Ψ̂
−1

Zi.

Remarks

• When MLE is used to estimate the factor loadings matrix then the quantity in brackets can

be simplified due to the constraint used by MLE which is that L̂T Ψ̂
−1

L̂ has to be diagonal;

• When PCA is used to estimate the loadings matrix, it is customary to use the LS method

instead - that is F̂i = argminFi

(
Zi − L̂Fi

)T (
Zi − L̂Fi

)
.
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(ii) Conditional expectation (regression method)

Another approach is to treat Fi as random and estimate them (or more appropriately said
predict them) using conditional expectation. That is

F̂i = E[Fi|Zi],

using the above model. If in addition we assume that all the random terms, Fi and εi are
normally distributed, then F̂i are the best linear unbiased estimators. Furthermore the conditional
expectation yields an analytical solution:

F̂i = L̂T
(
L̂L̂T + Ψ̂

)−1
Zi

Remark

• One can establish the relationship between the score estimators using (weighted)LS F̂LS
i and

the score estimators using conditional expectation F̂CE
i

F̂LS
i =

{
Ip +

(
L̂T Ψ̂

−1
L̂
)−1}

F̂CE
i .

• Studies to compare the two methods (LS and CE) have been carried and the two perform
relatively similarly. None is recommended as uniformly superior. In general it is recommended
to consider both approaches and compare the results.
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Beyond factor analysis

Latent variable models are a broad class of models, which postulate some relationship between the
statistical properties of observable variables and latent variables.

Category Latent variable Observed variable
Factor analysis Continuous Continuous

Latent profile analysis Categorical Continuous
Latent trait analysis Continuous Categorical
Latent class analysis Categorical Categorical
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