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1 Introduction

Motivating application: Epileptic seizures and chemotherapy study

‘The data are from a placebo-controlled clinical trial of 59 epileptics. Patients with partial
seizures were enrolled in a randomized clinical trial of the anti-epileptic drug, progabide. Par-
ticipants in the study were randomized to either progabide or a placebo, as an adjuvant to the
standard anti-epileptic chemotherapy. Progabide is an anti-epileptic drug whose primary mecha-
nism of action is to enhance gamma-aminobutyric acid (GABA) content; GABA is the primary
inhibitory neurotransmitter in the brain. Prior to receiving treatment, baseline data on the num-
ber of epileptic seizures during the preceding 8-week interval were recorded. Counts of epileptic
seizures during 2-week intervals before each of four successive post-randomization clinic visits were
recorded.’

Questions: Is the mean trend of seizures different across the two treatment groups? The
primary objective of the study was to determine whether progabide reduces the rate of seizures in
subjects like those in the trial. Additionally does age affect the mean trend over time?
Overview: This chapter deals with analysis of repeated outcomes which are either counts or binary,
or more generally non-normal. We discuss modeling approach, estimation, inference of the mean
regression parameters.

General setting:

• Outcome of interest: {Yi1, . . . , Yimi
} for unit/subject ’i’

• Yij either binary, or counts, or rates, etc
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• Times of the repeated measurements: {ti1, . . . , timi
} unit/subject ’i’

• Covariates associates wit the jth measurement of the ith subject

Xij = (Xij1, . . . , XijK)T ;

for example Xij1 = tij, Xij2 = t2ij, Xij3 = Treatmenti etc. The covariates describe by Xij

could change over time, or not change over time (‘time stationary’).

Let Xi be mi ×K matrix obtained by row-stacking Xij.

Objective: Study the effect of the covariates on the mean response trend.

Challenge: The responses are correlated !

Approach: there are few approaches commonly used to model such data. The first approach is to
extend the ideas of the GLM studied in last chapter to the setting. Intuition: use GLM to describe
the distribution Yij|Xij - call it ‘marginal distribution’ , marginal in the sense used by general linear
models methodology for normal responses. Then, model the association between the repeated
measures in some way.

The models developed in this way are called population-average models or marginal models.
These models are used primarily to make inferences about the population means. As a result
marginal models for longitudinal data model separately the mean response and the dependence
between the repeated measures. The parameter that captures the effect of the covariates on
the mean response is the regression parameter and is the parameter of interest. The parameter
that describes the data dependence is a nuisance parameter (however this parameter needs to
be accounted for in order to make accurate inferences about changes in the population mean
response).
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2 Population-average models: specification of marginal

models

The marginal models describe separately the conditional distribution for each individual response
Yij and the correlation between the repeated measurements. More specifically, the marginal models
for longitudinal data have the following 3 part specification:

1. marginal expectation - or the mean for each response Yij, conditional on the set of covariates
Xij, E[Yij|Xij] = µij depends on the explanatory variables Xij through the link function

g(µij) = Xijβ;

g(·) is the known monotone link function and β is the regression parameter that quantifies
the (linear) effect of the covariates on the transformed mean response;

2. marginal variance - or the variance of Yij conditional on Xij is assumed to depend on the
mean function µij

Var(Yij|Xij) = φv(µij)

where v(·) is the (known) variance function and φ is the unknown dispersion parameter. For
balanced longitudinal designs a separate scale parameter could be estimated at each occasion
φj; alternatively the scale parameter could depend on the time at which the repeatedly
observed outcome Yij is collected, tij;

3. the within subject pairwise association among the repeated responses given the covariates
(i.e. the dependence between Yij and Yij′). It is assumed that this association is a function
of possibly the mean parameter µij and another unknown parameter ω. For example, the
components of ω might represent the pairwise correlations between the repeated responses.
By analogy, when the responses were continuous and normal assumption was appropriate we
described the association by Pearson correlations: cor(Yij, Yik) = ρijk(ω), where ρijk(·) is
used to indicate a correlation function that is known up to the parameter ω.

The three part specification of the marginal models makes the extension of generalized linear
models to longitudinal data transparent.

• The first two parts describe the effects of the covariates on the mean and variance, and they
are straightforward extensions from the generalized linear models with scalar response.

• The last part describes the association among the responses measured on the same
unit/subject (recognizes the lack of independence among these responses) and represents
the main extension.

The correlation is a natural measure of the linear dependence for continuous responses; however
it is not the common measure to describe the association, otherwise. For example, for continuous
responses the correlation can be any value between -1 and 1, and it is independent of the means;
this is not the case for discrete cases. As a result with discrete responses, correlation is not the
common way to describe association. Instead, the odds ratio (or log odds ratio) is a preferable
metric to describe association among binary responses.
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Marginal models for

• “Normal” repeated responses

1. E[Yij] = µij; (identity link function) µij = Xijβ

2. Var(Yij) = φv(µij) with v(µij) = 1, Caution: this model assumes homogeneous vari-
ance.

3. corr(Yij, Yij′) = ω|j−j
′| if regular design (tij = tj for all i).

The marginal model discussed here is an example of the linear regression models for longi-
tudinal studies.

• Count repeated responses

1. E[Yij] = µij; (log link function) log(µij) = Xijβ

2. Var(Yij) = φv(µij) with v(µij) = µij. Here φ is an overdispersion parameter and
accounts for the extra variability of the model. Often in medical applications it is
necessary to account for this extra variability in order to have accurate inferences about
the mean effects.

3. Assume unstructured for the pairwise correlation to describe the pairwise association:

corr(Yij, Yij′) = ωjj′ if regular design. And ω is the vector containing all the pairwise
correlations ωjj′

• Binary repeated responses Yij = 1 (success)/0(failure)

1. E[Yij] = µij; (logit link function) logit(µij) = Xijβ

2. Var(Yij) = v(µij) with v(µij) = µij(1− µij).

3. Assume unstructured pairwise log odds ratio (OR) pattern to describe the pairwise
association: logOR(Yij, Yij′) = ωjj′ where

OR(Yij, Yij′) =
P (Yij = 1, Yij′ = 1)/P (Yij = 0, Yij′ = 1)

P (Yij = 1, Yij′ = 0)/P (Yij = 0, Yij′ = 0)

There is an implicit assumption made by the marginal models:

E[Yij|Xi] = E[Yij|Xij], where Xi = (Xi1, . . . , Ximi
).

This assumption holds for time-invariant covariates (Xij does not vary over j), or for time-
varying covariates that are set a priori by study design in a manner completely unrelated to the
longitudinal response . However when a time-varying covariate varies over time, this assumption
may not hold. For example such assumption would be violated when the current value of Yij given
the current covariate Xij predicts the subsequent value of Xi(j+1). For example this may arise in
observational studies to assess the effect of physical exercise on reducing the blood glucose level.

5



The correlation model implied by this model specification is popularly referred to in the context of
these models as working correlation model. This is because this correlation model carries still a lot
of uncertainty. The model is considered only a ‘working model’ rather than necessarily representing
what is probably a very complex truth.

Working correlation matrix. The model for the pairwise correlation is attempting to represent
all sources of variation that could lead to associations among the observations:

• correlation due to within-subject fluctuations (including measurement error)

• correlation due to the between subjects variation

To represent the overall correlation, one can use familiar models that we discussed in the
modeling of normally distributed data:

• unstructured correlation

• compound symmetry (exchangeable)

• one dependent correlation (only adjacent observations are correlated)

• AR(1) correlation among observations on the same subject tails off

• Markov models (generalization of AR(1) to unbalanced data)

Working correlation models are very popular in the context of longitudinal data. Let Γi(ω)
be mi ×mi pairwise correlation matrix (that describes the pairwise associations among repeated
responses on the same unit), and also let V (µi) be a diagonal matrix with diagonal elements v(µij).
Then the covariance among the repeated observations is represented as Σi = Σi(µi, ω):

Σi = φ{V (µi)}1/2Γi(ω){V (µi)}1/2.

Remarks

• In the case where Yij are normal responses, and furthermore the distribution of Yi is mul-
tivariate normal, then the specification of the conditional mean and variance, (conditional
on Xij) for each repeated observation, along with the specification of the correlation Γi(ω)
identifies the distribution of the vector of responses Yi (again conditional on Xi).

• This is NOT the case for the vector of generalized responses. To specify the likelihood
function for multivariate discrete data, even if the marginal distribution is given additional
knowledge about higher order moments are required.
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2.1 Statistical inference for marginal models

With discrete response data there is no analogue of the multivariate, normal distribution. Thus
there is no ’convenient’ likelihood function. Furthermore there is no unified likelihood based frame-
work for marginal models. The estimation is based on an alternative approach called Generalized
Estimating Equations.

Generalized Estimating Equations (GEE)

Liang and Zeger (1986) proposed a method for estimating β based on the concept of estimat-
ing equations. This provides a general and unified approach for analyzing discrete and continuous
responses with marginal models. The key idea is to generalize the unusual univariate likelihood
based estimating equations to the case where the response per subject is vector, by introducing
the covariance matrix of the vector of responses Yi.

Connection to previous estimation methods. Recall the estimating equations for the GLM
when the response per subject is vector and normally distributed Yi = Xiβ + εi.

n∑
i=1

XT
i Σ−1i (Yi −Xiβ) = 0

The estimating equations for scalar generalized response, Yi ∼ EF (ηi, φ) and E[Yi] = µi and
g(µi) = ηi = Xiβ, are:

n∑
i=1

∂µi
∂β

1

v(µi)
(Yi − µi) = 0;

this is equivalent to ∆TV −1(Y − µ) = 0. Recall ∆ is n ×K matrix of ∂µi/∂β and V is n × n
diagonal matrix with the ith diagonal element equal to v(µi).

Return now to our setting: generalized linear models for repeated measures. Let
Yi = (Yi1, . . . , Yimi

) be the vector of repeated measured for subject/unit i.

• Conditional on Xij the distribution of Yij ∼ EF (ηij, φ)

g(µij) = ηij = Xijβ;

Var(Yij|Xij) = φv(µij)

where v(·) is the variance (known) function and φ is the unknown dispersion parameter

• the correlation of Yij and Yij′ is a function of additional parameters ω. Let Λi be the working
covariance matrix Λi = φ{V (µi)}1/2Γi(ω){V (µi)}1/2.
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The generalized estimating equations (GEE) for β are

n∑
i=1

∆T
i Λ−1i (Yi − µi) = 0,

where

• µi is the vector of µij,

• ∆i = ∂µi/∂β is the mi × k matrix with the jth row equal to ∂µij/∂β

• Λi is the working covariance matrix; Λi = φ{V (µi)}1/2Γi(ω){V (µi)}1/2.

Remark 1: GEE may be viewed as the minimizer of the objective function
∑n

i=1(Yi−µi(β))TΛ−1i (Yi−
µi(β)).

Remark 2 that the GEE depends on both β and ω; a one step optimization is challenging. Typically,
a two-stage estimation is needed

• Obtain an initial estimator of β by assuming all observations across all individuals are inde-
pendent;

• Given the current estimate of β, say β̂, estimates of ω and φ are obtained based on the
standardized residuals, and the assumed “working correlation” matrix

rij =
Yij − µ̂ij
v1/2(µ̂ij)

φ̂ =
1

N −K

n∑
i=1

mi∑
j=1

r2ij, ω̂jj′ =
n∑
i=1

rijrij′

φ̂n

where µ̂ij = g−1(Xijβ̂) and N is the total number of observations.

• Given the current estimate of ω and φ construct an estimate for Λi, Λ̂i. An estimate of β
is obtained by a numerical technique which may be viewed as an extensions of the IRWLS
method used in the ordinary generalized linear model.
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2.2 GEE estimator: Sampling properties

It is important to note that GEE estimator is NOT an ML estimator, as it does not rely on the
distributional assumption of Yi; instead it was derived from an ad-hoc procedure. Nevertheless we
can establish theoretical properties of this estimator.

Assuming that the estimators of ω and φ are consistent, then β̂, the solution of the GEE has
the following properties:

• β̂ is a consistent estimator of β

• for large samples (large n), β̂ has approximately multivariate normal distribution,

β̂ ∼ N

β, φ
(

n∑
i=1

∆T
i Λ−1∆i

)−1 .

In practice we estimate ∆i and Λi. Thus V̂β̂ = φ̂
(∑n

i=1 ∆̂T
i Λ̂−1∆̂i

)−1
.

What happens with these properties of the GEE estimator of β when the assumption on
correlation is incorrect? One solution is to re-evaluate the covariance of the GEE estimator. The
robust estimator of the covariance V ar(β̂) is

• Vβ̂ = cov(β̂) = F−1GF−1, where

F =
n∑
i=1

∆T
i Λ−1i ∆i

G =
n∑
i=1

∆T
i Λ−1i cov(Yi)Λ

−1
i ∆i

where

• F, G depend on the true parameter values ω, φ and β ...

• Cov(Yi) can be estimated by the sample covariance of the residuals as

Ĉov(Yi) = (Yi − µ̂i)(Yi − µ̂i)T .

Remark: If Cov(Yi) is estimated using the model based covariance then, the above expression

gives the covariance Cov(β̂) discussed earlier.
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Final Remarks In summary the GEE estimators have the following properties

• The GEE estimator β̂ is consistent even when the covariance of Yi is misspecified. Question:
Then why bother accounting for the dependence?

• Standard errors of β̂ can be obtained using the empirical or so-called sandwich covariance
estimator. Remark: The robustness of the empirical sandwich estimator is a large sample
property. The empirical sandwich estimator is not appealing in the following situations:

– the number of subjects is small comparative to the number of repeated observations
per subject/unit

– the sampling design is unbalanced;

– subj/units cannot be grouped on the basis of having identical covariate design matrices

Intuitively there is not sufficient information in the data for the sample covariance to be well
estimated. For all these situations, the model based covariance is more suited.

• Hypotheses tests. Reformulate the hypothesis testing as H0 : Lβ = h. Use Wald testing
procedures as in hypothesis testing for the ordinary generalized linear models.

Specifically use the test statistic χ2 = (Lβ̂ − h)T (LV̂β̂L
T )−1(Lβ̂ − h). Under the null

hypothesis, this test statistic has χ2
number of rows in L

2.3 Model selection for GEE

Quasi-likelihood information criterion (QIC) was developed by Pan(2001) as a modification of the
AIC to apply to models fit by GEE.

Let R be a working correlation model (the model on which the working covariance Γi is based).
Define

Q{β̂(R), φ} =
∑
i

∑
j

Q{β̂(R), φ, Yij, Xij}

where Q{β̂(R), φ, Yij, Xij} = Qij/φ is the contribution of observation j to the cluster determined
by i. Here Qij are quasi-likelihood functions which differ according to the model used.

Here are some

• Normal data: Qij = −[1/(2wij)](Yij − µij)2

• Poisson data: Qij = wij(Yij log(µij)− µij)

• Binomial data: Qij = wij{rij log(µij) + (nij − rij) log(1− µij)

where wij is an a priori specified weight (default wij = 1).

QIC(R) = −2Q{β̂(R), φ}+ 2Trace{Ω̂I V̂R}
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• Ω̂I in the inverse of the model based covariance estimate under the independent working
correlation model assumption.

• V̂R is the robust estimate of the covariance.

QICu(R) = −2Q{β̂(R), φ}+ 2K}

where K is the number of regression parameters.
Remark: QIC can be used for (dependence/correlation) model selection when the responses

are non-normal QICu may used for selection of the regression parameters.

2.4 Fitting GEE in R

Recall: population-average or marginal model, provides a regression approach for generalized lin-
ear models when the responses are not independent (correlated/clustered data). Goal is to make
inferences about the population, accounting for the within-subject correlation.

There are two ways to fit marginal models: (1) the function gee in the R package gee (Carey
et al., 2012) ; and (2) the function geeglm in the R package geepack

gee(Y~ systematic_mean, id=id, data=data, family=binomial, corstr="exchangeable") )

geeglm(formula, family=gaussian, data, id, zcor=NULL, constr, std.err="san.se")

The major difference between gee and geepack is that geepack contains an ANOVA method
that allows us to compare models and perform Wald tests.

Not covered: Generalized linear mixed models (GLMM) which extend the LMM aproach to handle
generalized responses.
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