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1 Introduction

In the previous chapter we took a population perspective and modeled the response in terms of
a population behavior and a random deviation from this. In contrast the modeling we study in
this chapter focuses primarily on modeling the subject/unit trajectory. Hence the name “subject-
specific” approach that is commonly used for this approach.

Intuition: consider the subject/unit trajectory itself and model its behavior using 2 stages.

1st stage: Describe the trend of each subject trajectory by using some sort of parametric
model and subject-specific parameters (subject-level stage)

2nd stage: Describe how the subject-specific parameters vary across subjects (population
stage).

This modeling approach explicitly acknowledges the two sources of variation: within-unit and
between-unit. This perspective offers more flexible models that do not require balanced/regular
designs across units/subjects, allows for more general covariance structures, and can easily accom-
modate additional covariate information. In this chapter we will discuss interpretation of the model
components/estimation and inference as well as prediction of the full subject trajectory.

Dental study. ‘Dental growth measurements of the distance (mm) from the center of the pituitary
gland to the pterygomaxillary fissure were obtained on 11 girls and 16 boys at 8, 10, 12, and 14.’
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Random Coefficient Model (RCM)

Consider the dental study example and discuss the following:

• Examine the response trajectory for each subject in part. What features do you observe (look
at how the distance varies over time and how it changes) ?

• Discuss a model that could be used to describe mathematically the way that the distance
response for a subject varies over time. Make sure that whatever parameters you use are
specific to the subject.

• Using this perspective, what type of variation do you think you can quantify at this step.
Rrecall, we talked about two types of variations: within and between.

• What is the other type of variation that we need to describe. Intuitively try to suggest one
way to describe this other type of variation.
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Recall set up: Yij = Yi(tij) denotes the response obserbed for the ith subject at time tij. A linear
mean trend model for the response trajectory of the ith subject is specified by

Yi(tij) = β0i + β1itij + eij

where β0i is the subject-specific intercept and β1i is the subject-specific slope. The line β0i+β1itij
describes the response trajectory for the ith subject; it is called the subject-specific mean trajectory.
The departure of the response Yij from the ith subject-mean trajectory is considered random and
is attributable to either biological fluctuations about the subject-mean trajectory or measurement
error (or both). Here eij denotes the random deviation from the subject-mean trajectory; it is
assumed to have zero-mean. The model assumed for the variation of eij describes the within-unit
variation.

The parameters included in the specification of the subject-mean trajectory depend on the sub-
ject and thus are assumed random; let βi = (β0i, β1i)

T denote the full parameter for the subject i.
The model assumed for the variation of βi describes the between-unit variation.

Because the subject level parameters βi are random, this modeling approach is called ‘random
coefficient model’ in short RCM. RCM assumes a parametric model for the subject mean trajec-
tory; the linear model assumed above is just an example of RCM. Another example would be a
quadratic mean model Yij = β0i + β1itij + β2it

2
ij + eij. RCM are a particular case of the wider

class of models ‘linear mixed effects (LME) models’ which we study later in this chapter.

In class: Consider a linear mean model specified as above Yij = β0i+β1itij+eij, where i indexes
the subjects and j indexes the repeated measures. Assume that the subject-level parameters βi
are normally distributed: [

β0i
β1i

]
∼ iid N

([
β0
β1

]
,

[
D11 D12

D21 D22

])
.

• Re-write the model for Yij in a way that specifically describes the systematic trend in the
population or population mean trend and the random deviation.
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• Write down the population mean trajectory. Discuss whether this makes sense (recall the
model used for the subject mean trajectory)

• Focus on the between-units random deviation. First discuss the variability measured by D.
In particular discus 1) D12 = 0 and 2) D11 = D22 What are the practical implications of
these cases?

• Focus on the total random deviation. i) Let ei = (ei1, . . . , eini
)T be the vector of subject-level

random deviations. Denote by Ri = cov(ei). Write down the total variation (within-unit +
between-unit)
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• Focus on the total random deviation. ii) To gain insight into the flexibility of this approach,
consider next several particular cases. In each case write the model variance Σi = cov(Yi):

a) Assume Ri = σ2Imi
.

b) Assume Ri = σ2
1Γi where Γi is compound symmetric specified by parameter ρ.

c) Assume Ri = σ2Imi
+ σ2

1Γi where Γi is compound symmetric specified by ρ.

What are the model parameters in each of these cases (mean parameters as well as covariance
parameters)? Discuss your observations.
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In general Ri is specified as Ri = σ2
1Γi+σ

2
2Imi

, where Γi has some known correlation pattern
model (AR1, exchangeable, Toeplitz, etc as described in the previous chaper). The two
components describe the two sources of variability at the subject level: biological variation
about the subject mean trend (which is quantified by σ2

1Γi) and the measurement error
(which is quantified by σ2

2Imi
. In practice the structure assumed for Ri is related to which of

the two sources is believed to dominate. Specifically an assumption like Ri = σ2Imi
has the

interpretation that the measurement error dominates, while an assumption like Ri = σ2
1Γi

means that the biological variation dominates. Taking Ri = σ2Imi
is very common and tends

to be the default case for many statistical procedures.
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In class example: The Six Cities Study of Air Pollution and Health

The Six Cities Study of Air Pollution and Health was a longitudinal study designed to char-
acterize lung growth as measured by changes in pulmonary function in children and adolescents,
and the factors that influence lung function growth. A cohort of 13,379 children born on or after
1967 was enrolled in six communities across the U.S.: Watertown (Massachusetts), Kingston and
Harriman (Tennessee), a section of St. Louis (Missouri), Steubenville (Ohio), Portage (Wisconsin),
and Topeka (Kansas). Most children were enrolled in the first or second grade (between the ages
of six and seven) and measurements of study participants were obtained annually until graduation
from high school or loss to follow-up. At each annual examination, spirometry, the measurement
of pulmonary function, was performed and a respiratory health questionnaire was completed by a
parent or guardian.

The dataset contains a subset of the pulmonary function data collected in the Six Cities Study.
The data consist of all measurements of forced expiratory volume (FEV1), height (Ht) and age
(Age) obtained from a randomly selected subset of the female participants living in Topeka, Kansas.
The random sample consists of 300 girls, with a minimum of one and a maximum of twelve
observations over time.
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Based on the plot above, write down a possible RCM to describe the variation of the FEV1
over time (Age) and accounts for the height (Ht) of the females.
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Linear mixed effect model (LMM)

Setup: Observed data are repeated observations from n units/subjects/objects, indexed by i;
{Yij, tij, and other covariates : j = 1, . . . ,mi}. The linear mixed effect model (LMM) is the
model obtained by aggregating the two levels below:

• (1st level) Yij = XT
ijβ + ZT

ijbi + eij with eij zero-mean random deviations. In vector format
the LMM can be written:

Yi = Xiβ + Zibi + ei

- β is K-dimensional vector of fixed parameters; Xi- mi × K dimensional fixed design
matrix with rows XT

ij

- bi is q-dimensional vector of random parameters; Zi- mi×q dimensional random design
matrix with rows ZT

ij ;

- ei = (ei1, . . . , eimi
)T is mi-dimensional vector of residuals. It is assumed independent

over i, ei ∼ Nmi
(0, Ri).

• (2nd level) Describe the model for the subject-parameters

bi ∼ Nq(0, D)

Interpretation of the model parameters. Answer the following questions.

• (Conditional perspective) Write down the distribution of Yi|bi (that is calculate the condi-
tional mean and the conditional variance).

– E[Yij|bi]. The conditional mean describes the mean response of an individual/unit

– V ar(Yi|bi)

• (Marginal perspective) Write down the distribution of Yi (that is calculate the marginal mean
and the marginal variance).
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– E[Yij]. The marginal mean describes the mean response in the population. For this
reason the fixed parameter β is also referred to by “population-average ” parameter. It
has population average interpretation.

– V ar(Yi)

In class: Assume the model Yij = β0 + β1tij + bi1tij + eij. Interpret the slope parameters β1 and
bi.

Recall the general LMM model Yi = Xiβ + Zibi + ei for ei ∼ Nmi
(0, Ri) and bi ∼ Nq(0, D).

Furthermore assume that Ri has a known structure and depends on a vector parameter. Model
parameters:

• Fixed:
- mean regression parameters β
- covariance regression parameters ω = vector of the elements of D and the parameters of
Ri.

• Random:
-subject specific random effects bi.

In the following we discuss the estimation of the fixed effects and the prediction of the random
effects.
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Estimation/inference of model parameters

Intuition: Estimation and inference about the fixed effects is based on the marginal model for Yi,
and hence it follows the same general ideas as the estimation/inference in the population average
models. Prediction of the fixed effects is based on the conditional model Yi|bi.

Fixed effects parameters

Recall the model
Yi = Xiβ + Zibi + ei,

where bi ∼ Nq(0, D) and ei ∼ Nmi
(0, Ri) with bi independent of ei. Denote by ω the vector of

the covariance parameters (the parameters describing the covariances D and Ri).

Here we discuss statistical inference about the population-level parameter, β. Inference for the
classical LMM focuses on the fixed effects parameters β. For these models estimation uses the
methods based on the marginal log-likelihood. ML/REML are used to estimate both β and ω.
Consequently the inferential tools are very similar to those introduced for the marginal models for
correlated data.

The same methods for carrying inference for β apply:

• GLS to estimate β, denoted by β̂

• var[β̂] = Vβ̂(ω) as before

• Distribution of β̂ ∼ Nk(β, Vβ̂(ω)). For large samples substitute the true covariance parameter

ω by its estimate ω̂. For notation we use V̂β̂ = Vβ̂(ω̂)

• Testing hypotheses involving β is done by formulating the hypothesis as Lβ = h and using
Wald / LRT procedures studied earlier which we briefly review. If the null hypothesis is

Lβ = 0

then one can use Wald (with its tν̂ counterpart for smaller sample size, and row vector L)
or LRT. Wald and LRT have an asymptotically χ2 distribution under the null hypothesis.

Random effects parameters

One main advantage of this methodology is the ability to predict individual trajectories, by incor-
porating individual specific information. The idea is to exploit the fact that the individual mean
is described by Xiβ + Zibi. In particular if β̂ and b̂i are the estimates of β and bi, then the ith
individual trajectory can be ‘predicted’ by

Ê[Yi|bi] = Xiβ̂ + Zib̂i

Terminology: Predictor is an estimator of a random quantity. In contrast, estimator is a term
correctly used only in regards to a fixed unknown parameter.
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Intuition: the subject specific random deviations bi will be predicted using best linear unbiased
prediction (BLUP). The predictors are:

i) linear functions of the data (hence the name linear)
ii) unbiased - that is the average value of the predictor is equal to the average (random)

quantity being predicted;
iii) best - in the sense that they achieve minimum mean squared error among all the linear +

unbiased predictors.

BLUPs were introduced by Henderson (1950) - as the ‘joint maximum likelihood estimates’;
although the actual name/acronym was used later by Goldberger (1962). He latter corrected this
name on the basis that the function being maximized is not a proper likelihood function.

Approach 1. Assume that both bi’s and ei’s have normal distribution as above. The specific
function we refer to is the joint density of bi’s and Yi’s:

n∏
i=1

{f(Yi|bi)× f(bi)} =
n∏
i=1

(2π)−m1/2|Ri|−1/2 exp{−1

2
(Yi −Xiβ − Zibi)TR−1

i (Yi −Xiβ − Zibi)}

×
n∏
i=1

(2π)−q/2|D|−1/2 exp(−1

2
bTi D

−1bi).

The maximization is carried in the typical way, that is, by working in the logarithm scale, taking
the (partial) derivatives with respect to β and bi and setting them to zero.

We derive the solution β̃ and b̃ by using the form of the LMM Y = Xβ + Zb+ e, where Y is
the N -dimensional vector obtained by stacking all the responses Yij first over j and then over i, X
is N ×K full fixed design matrix, b is the nq dimensional vector obtained by column stacking the
random deviations bi, Z is the N × nq full random design matrix obtained by stacking the subject
random design matrices Zi in a diagonal pattern so that Zb is the column stacking of Zibi over
i’s. Also e is the full vector of residuals. We denote by R = diag{R1, . . . , Rn} the block diagonal
matrix of dimensions N ×N with block matrices R1, . . . Rn. Also let G = {D, . . . , D} the block
diagonal matrix of dimensions nq × nq with n diagonal elements D = cov(bi).

Using this notation, the -2 × log of the joint density (to be minimized) can be written as:

(Y −Xβ − Zb)TR−1(Y −Xβ − Zb) + bTG−1b (1)

by ignoring the constant terms with respect to β and b. Let’s make the following notations:

C = [X|Z] N × (K + q) dimensional matrix obtained by concatenating the two design matrices

B =

[
0K×K 0K×nQ
0nQ×K G−1

]
.

The solution can be written as:[
β̃

b̃

]
= (CTR−1C +B)−1CTR−1Y ; (2)
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this solution is often referred to as mixed model solution. In practice this solution is not readily
accessible as the model variance-covariances are not known and require estimation.

Approach 2. Recall that b is vector of random effects - what is a good prediction?
Let’s consider a simple example;

y = v + ε,

[
v
ε

]
= N

([
0
0

]
,

[
1 0
0 4

])
. (3)

Assume we observe y. How to predict v? The “best linear predictor” (BLP) of some random term
v is defined to be ṽ for which E{(v − ṽ)2} is minimized under the constraint that ṽ is linear in y.
The solution to this minimization problem is

ṽ = E[v|y]; (4)

is called “the best linear predictor” of v. In general if v is vector then best linear prediction corre-
sponds to minimization of E{‖v − ṽ‖2} and the solution is ṽ = E[v|y].

We will apply this logic to our problem to estimate the BLUP of β and b. We want to minimize

E[‖(Xβ̃ + Zb̃)− (Xβ + Zb)‖2]

subject to the solution being unbiased,

E(Xβ̃ + Zb̃) = E(Xβ + Zb).

It can be shown that the solutions are:

BLUP (β) : β̃ = (XTΣ−1X)−1XTΣ−1Y (5)

BLUP (b) : b̃ = E[b|Y ] = GZTΣ−1(Y −Xβ̃); (6)

here Σ = diag(Σ1, . . . ,Σn) is the N ×N covariance matrix of Y .

Remark: The solution for β is the same as the GLS. The two solutions coincide with the maxi-
mizers of the joint likelihood discussed earlier. The earlier justification (Henderson’s justification)
makes distributional assumptions. The latter one does not make any distributional assumptions -
it predicts the random parameters by best prediction using conditional expectation. However, the
analytical expression of b̃ is based on normality.

In practice one uses the plug-in estimators for Σ and β̃, denoted by , Σ̂ and β̂, respectively.

Standard error estimation. From the BLUP estimation of β, it follows that

covβ̃ = (XTΣ−1X)−1

and so the standard errors of the components of β are determined based on the diagonal of this
covariance matrix.
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How to calculate standard errors for b̃? Notice that to begin with b is random vector, and thus
instead of using the typical idea to calculate covb̃ we calculate cov{b − b̃}. More formally, we
calculate the precision of the BLUP estimates as:

cov

[
β̃ − β
b̃− b

]
= cov

[
β̃

b̃− b

]
= cov

{[
β̃

b̃

]
−
[
0 0
0 Iq

] [
β
b

]}
= cov(θ̃ −Mθ)cov(HCTR−1Cθ +HCTR−1e−Mθ)

= H

where H = (CTR−1C + B)−1, θ = (βT , bT )T and M matrix is like B, except the right-
most lower block diagonal (analogous to G−1) is Iq. Here we used the analytical solution of

θ̃ = (CTR−1C + B)−1CTR−1Y and the representation of Y as Y = Cθ + e. Also we used the
fact that b and e are assumed independent.

The standard error in estimation of the BLUP for b is obtained based on the formula above. In
practice we use plug-in estimators of G, Ĝ based on D̂ and of R, R̂.

The BLUP estimator for bi is
b̃i = DZT

i Σ−1
i (Yi −Xiβ̂),

where β̂ is the GLS estimator of β. Notice Σi, D are known up to the set of parameters ω. When
the covariance parameters estimates are plugged in the above estimator, the unbiasedness and
smallest variance properties hold approximately.

The estimator
b̂i = D̂ZT

i Σ̂−1
i (Yi −Xiβ̂)

is called the empirical/approximate BLUP, also the Empirical Bayes estimator for bi.
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Prediction of individual trajectories Once the subject effects are estimated, then the individual
mean can be estimated using the conditional expectation E[Yi|bi]; the estimator for this is

Ŷi = Ê[Yi|bi] = Xiβ̂ + ZiD̂Z
T
i Σ̂−1

i (Yi −Xiβ̂)

The subject’s predicted response can be represented as a weighted average of the population
mean profile and the observed subject’s mean profile:

Ŷi = (R̂iΣ̂
−1
i )Xiβ̂ + (I − R̂iΣ̂

−1
i )Yi

Discussion: the predicted response is shrunk towards the population average profile, where the
amount of ‘shrinkage’ depends on the relative magnitude of Ri and Σi, or their estimates
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In class exercise: To gain more insight, consider the following example Yij = µ + bi + eij for
bi ∼ iid N(0, D) and eij ∼ iid N(0, σ2), where D is scalar here.

i Estimate the population mean parameter µ.

ii Find the predicted bi. Hint: Σ−1
i = 1

σ2 (Imi
− D

σ2+miD
Jni

), where var(Yi) = Σi and Jmi
is

the mi ×mi matrix of ones.

iii Determine the individual predicted response

iv Discuss the effect of large/small D (’among units variance’) in magnitude compared to σ2.
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Comparing nested models for the covariance: testing

whether an effect is random

Motivation. Recall the six cities air pollution example, where FEV1 measurements are obtained
for 299 girls observed at repeated occasions. The following model is assumed

log(FEV 1)ij = (β0 + b0i) + (β1 + b1i)Ageij + β2 log(Htij) + eij;

where eij ∼ N(0, σ2) and [
b0i
b1i

]
∼ N

([
0
0

]
,

[
D11 D12

D12 D22

])
.

From the modeling perspective this covariance structure is appealing, because the number of co-
variance parameters is: 4. In general, for a model with q random effects, which assumes conditional
independence, there are q × (q + 1)/2 + 1 covariance parameters.

For most models it is sufficient to assume random intercept and random slope (like above) ! In
our model, it is assumed implicitly that Ageij has a random effect, and not fixed. The question we
are interested to study is whether Age has random effect or just fixed? Statistically we formulate
the hypothesis that the subjects specific slopes are not random by the following hypothesis testing

H0 : D22 = 0 versus H1 : D22 6= 0;

notice that the null hypothesis also imply that D12 = 0.

In general one is interested to test whether there are q correlated random effects versus (q− 1)
correlated random effects. Assume the model is Yi = Xiβ+Zibi+ ei, where bi ∼ iidNq(0, D) and

D =

[
D11 D12

DT
12 D22

]
,

where D11 is (q − 1) × (q − 1) matrix, D12 is (q − 1) × 1 matrix and D22 ≥ 0. Of interest is to
test the hypothesis testing

H0 : D22 = 0, D12 = 0, D11 is positive definite versus H1 : D is positive definite.

In many settings likelihood ratio testing (LRT) is a valid test for comparing nested models. Recall
the LRT

TLRT = 2 log L̂H1 − 2 log L̂H0 ;

the classical asymptotic null distribution of the LRT is χ2
r, where r is the difference between the

number of parameters specified by the alternative and the ones needed by the null. However
standard theory used to develop the asymptotic null distribution of the test is chi-square is not
valid. (Why?)
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It turns out that the asymptotic null distribution of LRT is 0.5χ2
q−1 + 0.5χ2

q.

Brief intuition: Any variance quantity is non-negative; hence testing that a variance parameter
equals zero means that we test for a value that is at the boundary of the parameter space. The
classical theoretical arguments are no longer valid. If the usual null distribution is used the result-
ing p-value will be overestimated. Thus, in general, ignoring this problem can lead to selection of
model for covariance that is too simple.

Final Remarks

• The REML likelihood provides a measure of the goodness of fit of an assumed model for the
covariance. A standard approach for comparing two nested models is via the LRT with the
correct asymptotic null distribution.

• For non-standard covariance comparisons or when the models are not nested, they can be
compared in terms of information criteria (AIC, cAIC, BIC) that effectively penalize the com-
plexity of the model assumed.

Here too, if the assumed covariance has been mis-specified, we can correct the standard errors by
using ‘empirical’ or so-called ‘robust’ variances. The empirical or so-called ‘robust variance’ of β̂ is
obtained by using V̂i = (Yi −Xiβ̂)(Yi −Xiβ̂)T as an estimate of var(Yi). Recall that we derived

the empirical variance of β̂ some time ago.

This empirical variance estimator is also known as the ‘sandwich estimator’. The remarkable
thing about the empirical estimator of var(β̂) is that it is a consistent estimator of the variance
even when the model for the covariance matrix has been misspecified. That is, in large samples
the empirical variance estimator yields correct standard errors.

In general, its use should be confined to cases where the number of subjects/objects n is
relatively large and the number of repeated measurements m is relatively small. The empirical
variance estimator may not be appropriate when there is severe imbalance in the data.
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Bad Data.... Good Data
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