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1 Introduction

In the previous chapters we focused on methods for analyzing longitudinal data where

- the response variable is continuous with values ranging over the real line;

- the vector of subject-level responses is assumed to have (exactly or approximately) a multi-
variate normal distribution.

In this chapter, we consider the case where the vector of subject-level responses cannot be modeled
using a normal distribution.

Examples: the response is binary and takes only values 0(“failure”)/1 (“success”); the response
is a “count” (0, 1, 2, . . .) but the values are relatively small, etc.

We refer to these types of responses by the name “generalized” responses. The models used
to analyze generalized responses, analogous to linear models, are called generalized linear models.
We begin with a review of the generalized linear models for scalar responses and then discuss these
class of models for repeated measures.

Data Example. Consider the following well known data set (Hand et al. , 1994). The numbers
of Prussian militiamen killed by being kicked by a horse in each of 10 separate corps of militiamen
are measured between 1875 – 1894. Here is a snapshot of the data:

Table 1:
Obs Year Corps Number of men killed

1 1875 1 0
2 1875 2 0
3 1875 3 0
4 1875 4 0
5 1875 5 1
6 1875 6 1
7 1875 7 0
8 1875 8 0
9 1875 9 1
10 1875 10 0
11 1876 1 0
...

...
...

...
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Some questions of interest:

• Are the differences in the number of men killed attributed to systematic effects of year or
corps?

• How to assess formally that two particular years, say 1875 and 1880, have the same effect
on the number of horse kick deaths?

2 Generalized linear models: scalar response

Generalized linear models extend the methods of regression analysis to settings where the out-
come is dichotomous (binary variable), count etc. They share many of the characteristics of linear
models; most notably the fact that a linear combination of the covariates is related to the mean
response. They differ from the linear model in couple a of ways including the fact that the dis-
tribution of the response is not normal. The distribution of the response is assumed to be in the
exponential family. The exponential family class is a very wide class of distribution and includes
the normal distribution, Bernoulli distribution, Poisson, Gamma etc.

Setting
Denote the observed data by: [Yi, Xi1, . . . , XiK ] for i = 1, . . . , n where Yi is the scalar response
and Xi1, . . . , XiK are covariates. It is assumed that Yi is in the exponential family, and Yi’s are
independent over i. The generalized linear models are specified by the following THREE main
parts:

1) distributional assumption of Yi

2) modeling the systematic component (i.e. it describes the manner in which the covariates
affect the mean response)

3) specification of the link function (i.e. links the mean response to the systematic component).
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1. The distributional assumption. It is assumed that the outcome Yi follows a distribution
that belongs to the exponential family. Examples:

• Yi ∼ Bernoulli(pi).
P (Yi = y) = pyi (1− pi)1−y.

What are the mean and variance?

• Yi ∼ Poisson(λi).

P (Yi = y) =
e−λiλyi
y!

What are the mean and variance?

• Yi ∼ N(µi, σ
2).

f(y) =
1√

2πσ2
e−

1
2σ2

(y−µi)2

What are the mean and variance?

The exponential family models are denoted by EF (ηi, φ), where ηi is related to the mean of
Yi and φi is called dispersion parameter or scale parameter and is related to the variance of Yi,
that is not captured by ηi.
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2. The systematic component. The systematic component specifies that the effect of the
covariates Xi1, . . . , XiK on the mean response Yi can be expressed in terms of the following linear
predictor

ηi = β0 + β1Xi1 + . . .+ βKXiK

or in vector format ηi = XT
i β, where Xi is the (K + 1)-dimensional column vector of Xil’s with

1 as the first element, and β = (β0, β1, . . . , βK)T is the (K + 1)-dimensional column vector of
βl’s. The parameter ηi is called the linear predictor. The parameter β is called regression parameter.

3. The link function The link function is a function that links a transformation of the mean
response to the linear predictor. Denote the mean response µi = E[Yi]; then the common notation
for the link function is: g(µi) = ηi.
The link function is known and assumed monotone and differentiable over the domain of µi.

Examples:

• Identity link (common for normal responses), g(x) = x:

• Logistic link (common for binary responses 0/1), g(x) = log x
1−x :

• Probit link (used for binary responses) g(x) = Φ−1(x) where Φ(·) is the cumulative distri-
bution function (CDF) of a standard normal variable N(0, 1).

• Log link (used for counts responses) g(x) = log(x)

Illustration:

A. Logistic regression model : The observed data are {Yi, Xi}ni=1. Assume a logistic model for the
response: Yi ∼ Bernoulli(pi) with log{pi/(1− pi)} = ηi where ηi = β0 + β1Xi.
With your stats buddy, identify the three model components of this GLM.

1. Odds ratio of success or simply odds are defined as:

P (Yi = 1)

P (Yi = 0)

and describe the likelihood of success relative to failure. Eg: An odds ratio of 4 to 1 means
that the probability of success is 4 times larger than the probability of failure. Thus, the
logistic model relates the log odds to the covariates.

2. Draw a plot (approx) of the probability of success P (Yi = 1|X = x) versus x (assume
β1 > 0).
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3. Assume Xi is continuous. Describe the interpretation of β0 and β1

B. Log-linear model for counts: This model is often used when the response is

• counts of the number of times some event occurs in either time or space (e.g. the number
of militiamen killed by horse kicks during a year)

• rates at which an event occurs (e.g. the number of epileptic seizures in 4-weeks interval
or in 8-weeks interval; or counts over different size of groups, or crops infected by virus
over regions of different areas). The absolute number of events (count) is sometimes not
satisfactorily because it refers to different ‘times at risks’ (interval of time, or size of groups,
or areas of regions).

The primary objective of the log-linear regression is to relate the expected counts/rates to a set of
covariates.

Consider the observed data: {Yi, Xi, Ti}ni=1; the response Yi has values 0, 1, 2, . . . and Xi is scalar
and Ti is related to the time during which Yi is observed. Assume the model:

Yi ∼ Poisson(µi) and log

(
µi
Ti

)
= β0 + β1Xi,

Identify the three model components of this GLM.

• The “covariate” Ti is the time at risk, and is known as offset.

• Normally we have var(Yi) = µi (recall Yi follows Poisson distribution). However in many
biomedical applications the count data have variability that exceeds that which is predicted
by Poisson model. To account for this, an overdispersion parameter is introduced:

var(Yi) = φµi
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where φ is the overdispersion parameter. This parameter is estimated from the data.

Failure to account for overdispersion results in standard error for estimated parameters that
are smaller than they should be, and implicitly in smaller (hence incorrectly specified) p-
values.

In the following let’s assume that the response is calculated over the same duration (time at
risk); in this case it is common to assume Ti = 1 for all i. Interpret the regression coefficients β0
and β1. Assume that Xi is continuous.
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3 Parameter estimation: Maximum Likelihood

Combining the parts 1, 2 and 3 the generalized linear model (GLM) is specified by:

Yi ∼ EF (ηi, φ), g (E[Yi]) = ηi, ηi = β0 + β1Xi1 + . . .+ βKXiK

or in short g (E[Yi]) = XT
i β, for the known and monotone link function g and unknown regression

parameter β; here φ is a dispersion parameter and is considered a nuisance parameter. In this
section we discuss ways to estimate β.

As GLMs specify a distribution for the response Yi, maximum likelihood estimation (MLE) is
used to estimate the model parameters.

In-class: Assume a logistic model for the response: Yi ∼ Bernoulli(pi) with log{µi/(1 −
µi)} = ηi where ηi = XT

i β. Here we used the parameterization µi = P (Yi = 1)
Let’s write the likelihood function of β. The maximum likelihood estimate (MLE) of β is obtained
by setting the first derivative of the log-likelihood function to zero.

• The likelihood function for this model, L(β) =
∏n

i=1 P (Yi = yi|xi) =
∏n

i=1 µ
yi
i (1−µi)(1−yi).

Recall that

µi =
exp{XT

i β}
1 + exp{XT

i β}

• The log-likelihood function for this model is:
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• Denote by D(β) the gradient of the log-likelihood function (the vector of the first derivatives
of the likelihood function with respect to all components of β). The MLE of β are among
the solutions of D(β) = 0. Calculate D(β).

The equations described by D(β) = 0 can be written for the general case where the data are
{Yi, Xi ∼ Rk} and Yi ∼ EF (µi, φ) as:

n∑
i=1

1

v(µi)
(yi − µi)

(
∂µi
∂β

)
= 0;

they are also know as the estimating equations for the regression parameter β. This is because
they are used to estimate the unknown parameter.

Remarks. Before discussing how these estimating equations are solved, let’s analyze them:

• Term (yi − µi) represents the deviation of yi from its mean;

• Term v(µi) is the variance of yi by ignoring the scale parameter.

• The regression parameter β appears in both the mean and the weight (1/v(µi)).

• Even when ∂µi/∂β is constant as function of β it may be still very complicated to get close

form expression for the estimate β̂.

This optimization problem is not easy to solve, because it involves (in general) a nonlinear
system of equations in β. For that reason, an iterative method is needed. One simple way to
understand this procedure is from the sequence of iterations called iterative re-weighted least
squares (IRWLS), Nelder and Wedderburn (JRSSA 1972):

• Start with an initial value (guess) β̂(0) using the data and the distribution Yi;

• Compute the weights v
(0)
i = v(µi(X

T
i β̂

0))
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• Estimate β̂(1) such that
m∑
i=1

1

v0i
{yi − µi(XT

i β)}∂µi
∂β

= 0

• Compute new weights v
(1)
i = v{µi(XT

i β̂
(1))} and repeat until there is not much variation in

the estimates β̂(l)’s.

To gain insight into the solution, we consider alternatives which explicitly provide the solution
at each iteration. One common method is the Newton-Raphson algorithm, a generalization of
the Newton algorithm for the multidimensional parameter. Denote H(β) the Hessian of the log-
likelihood, i.e. the matrix of second derivatives with respect to all components of β. Then, one
Newton-Raphson iteration step is

β̂new = β̂old − {H(β̂old)}−1D(β̂old).

A variant of the Newton-Raphson is the Fisher scoring algorithm which replaces the Hessian
by its expectation (w.r.t. the observations )

β̂new = β̂old + [E{H(β̂old)}]−1D(β̂old).

In particular while H(β) has a cumbersome expression, note that its expected value is

EH(β) =
∑
i

[
{g′(Xiβ)}2

v(µi)

]
XT
i Xi.

Define W = diag[{g′(XT
1 β)}2/v(µ1), . . . , {g′(XT

n β)}2/v(µn)] and

Ỹ =

(
Y1 − µ1

g′(XT
1 β)

, . . . ,
Yn − µn
g′(XT

n β)

)T
.

Also let X be the n×K matrix obtained by row-stacking XT
i ’s. The solution provided by the

Fisher scoring algorithm at the (l + 1) step is

β̂(l+1) = β̂(l) + (XTWX)−1XTWỸ = (XTWX)−1XTWZ

where Z = (Z1, . . . , Zm) is the vector of adjusted dependent variables Zi = XT
i β̂

(l) + Ỹi

Zi = XT
i β̂

(l) +
Yi − µi

g′(XT
i β̂

(l))

and Zi is calculated for the current value of β, i.e. β̂(l); thus is adjusted at each iteration.

Denote by β̂ the resulting parameter estimate.

An estimate for the scale (dispersion) parameter φ is:

φ̂ =
1

n−K
∑
i

(yi − µ̂i)2

v(µ̂i)
;

this estimate is often referred to as the Pearson chi-square estimate divided by the degrees of
freedom.
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4 Inference for the regression parameter

For large n, the estimator satisfies

β̂ ∼ NK{β, φ(∆TV −1∆)−1}

• φ is the scale parameter

• ∆ is n×K matrix with rows equal to ∂µi/∂β

• V is n× n diagonal matrix with elements v(µi)

The variance-covariance matrix of the estimator β̂ can be approximated by plugging in estimates
for the unknown parameters,

V̂β̂ = φ̂(∆̂T V̂ −1∆̂)−1.

Hypotheses tests of the form H0 : Lβ = h can be carried using Wald test. In particular notice
that

Lβ̂ ∼ Nr(Lβ, LV̂β̂L
T );

thus the construction of the test statistics is similar to that discussed in the previous chapters.

5 Goodness of fit

Historically the deviance has played a major role in assessing the goodness of fit of the models, in
particular in generalized models. In generalized linear models it has a similar role to the residual
variance from ANOVA in linear models (residual sum of square, RSS). It can be used to test the
fit of the link function and linear predictor to the data, or to test the significance of a particular
predictor variable (or variables) in the model.

The deviance compares the likelihood of a “saturated” model, which is defined using the same
distribution and link function as the model of interest but with g(µi) = ψi for all i, and the current
model, where g(µi) = XT

i β. We can think of the saturated model as having the most general
possible mean structure for the data since the means |i are unconstrained; hence the names “full
model” or “maximal model” that the saturated model is also referred by. Mathematically, the
deviance is defined as

D = 2̂̀S − 2`(β̂);

where β̂ are the maximum likelihood estimates of the regression parameters. Under some regularity
conditions, if the proposed model describes the data nearly as well as the saturated model, then
asymptotically

D ∼ χ2
n−K
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where n is the number of subjects in the data and K is the number of regression parameters. If
the proposed model is poor, D will be larger than predicted by the χ2

n−K distribution. A version
of deviance, the scaled deviance is also used: D/φ, where φ is the dispersion parameter.

Another statistic used to assess the goodness of fit is Pearson’s chi-square (χ2) statistic.

χ2 =
n∑
i=1

(Yi − µi)2

v(µi)
;

where µi is the mean of Yi and v(µi) is the variance function,
Residuals represent the difference between the data and the model. For Gaussian data the

residuals are defined as y − µ̂; in GLM the residuals are defined in several ways. Pearson residuals
are calculated as

rP =
y − µ̂√
V (µ̂)

Deviance residuals are defined as sign(y− µ̂)
√
di, where D =

∑n
i d

2
i is the deviance. Plotting

the residuals versus the fitted values allows to make sure that there is no deterministic part left
unexplained in the data.

6 Fitting GLM in R

Generalized linear models are fit in R using the function glm(). The formula is:

glm ( formula, family=binomial, data, offset)

Extracting the deviance residuals in R is using the function residuals().
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